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A symmetrizer for a symmetric Runge–Kutta method is designed to preserve the asymptotic
error expansion in even powers of the stepsize and to provide damping for stiff initial
value problems. In this paper we study symmetrizers for the Gauss methods with two and
three stages and compare the implementation in passive and active modes. In particular,
we perform a detailed analysis of the Prothero–Robinson problem which provides insight
into the behaviour of symmetrizers in suppressing order reduction experienced by
the symmetric methods. We present numerical results on the effects of passive and
active symmetrization for some stiff linear and nonlinear problems. These effects have
important implications for the development of extrapolation methods based on higher
order symmetric methods for the numerical solution of stiff problems. Our results show
that symmetrization in both modes improves accuracy and efficiency, and can restore
the classical order of the Gauss methods for stiff linear problems. We compare the two
modes of symmetrization for constant stepsize and present preliminary results in a variable
stepsize setting.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The use of extrapolation to accelerate convergence has been known since the work of Richardson [16]. In Romberg
integration [17] the application to numerical quadrature has been highly successful. The existence of asymptotic error
expansions [10,18], especially those of symmetric methods, allowed extrapolation methods to be developed for ordinary
differential equations. Those based on the explicit midpoint rule have had considerable success when applied to nonstiff
problems (ODEX [3]). Application to stiff problems though have achieved moderate success and these have been based on
the implicit midpoint or trapezoidal rules (IMPEX [8]) and the linearly implicit midpoint rule (METAN1 [2]). In these appli-
cations two features stand out – the use of the smoothing formula by Gragg [10] and the symmetry of the base methods
which lead to the h2-asymptotic error expansions of the form

yn − y(xn) = e1hp + e2hp+2 + · · · , h → 0, (1)

where the coefficients ei , i = 1,2, . . . , are smooth functions independent of h. Stetter [18] proved the existence of such
expansions for a very general class of discretization methods for nonlinear functional equations (e.g. initial and boundary
value problems for both ordinary and partial differential equations, integral and integro-differential equations). Moreover,
theoretical results on the existence of an asymptotic expansion for the global error of the implicit Euler, implicit midpoint
rule and implicit trapezoidal rule are given in [1] by the Vienna group. They have studied the existence of such expansions
for a class of nonlinear stiff systems.
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Table 1
Maximum attainable order of symmetrizers for Gauss methods.

Stage number s 1 2 3 4 5 6 7
Classical order of Gs 2 4 6 8 10 12 14
Maximum attainable order of G̃s 1 3 5 5 7 9 9

In contemplating extensions to the above-mentioned methods for stiff ordinary differential equations, we are lead to
explore symmetric Runge–Kutta methods such as the Gauss and the Lobatto IIIA families of order higher than two with the
idea of exploiting the h2-asymptotic error expansion these methods possess. However there are difficulties to be overcome.
The Gauss methods, for example, suffer from the phenomenon of order reduction [15,11] when applied to stiff problems.
Symmetric methods, though A-stable, have weak damping properties. It is desirable in applications to stiff problems that
a method provides damping and suppresses order reduction and yet, at the same time, preserves the h2-asymptotic er-
ror expansion. Since these features are important for the development of extrapolation methods, we construct methods
called symmetrizers [7] that are based on symmetric methods but which are themselves not symmetric and explore their
properties.

Gragg [10] was the first to introduce the concept of smoothing designed to dampen the oscillatory parasitic component
of the numerical solution of the explicit midpoint rule. In the late 1980s, Chan [7] generalized this concept, calling it
symmetrization, and extended the theoretical study of extrapolation to arbitrary symmetric Runge–Kutta methods for stiff
ordinary differential equations.

In this paper we study, in particular, the Gauss methods with 2 and 3 stages, G2 and G3, of classical order 4 and 6,
respectively, for stiff problems. Butcher and Chan [6] have given a complete set of maximum attainable order for the
symmetrizer G̃s for the s-stage Gauss method, Gs (see Table 1). In general, a symmetrizer R̃ has odd order 2p −1 whenever
the even order conditions up to order 2p − 2 are satisfied. The local error of R̃ of order 2p − 1 behaves like O (h2p). We
will show in our analysis that the symmetrizer can achieve order 4 for G̃2 and order 6 for G̃3 when solving very stiff linear
problems.

In a theoretical study of this phenomenon, Burrage and Chan [4] suggested that appropriate symmetrizers for Gs can be
chosen so that the corresponding global errors behave like O (hs+1) for s = 3, O (hs+2) for s = 2,4,6 and O (hs+3) for s = 5.

In this paper we investigate two different ways of implementing symmetrization. In the passive mode the numerical
solution of the symmetric method is propagated at every step even though symmetrization can be applied at any step. In
active symmetrization, on the other hand, it is the symmetrized solution that is propagated whenever it occurs.

In Section 2 we discuss the characterization and properties of symmetry and describe the construction of symmetrizers
and their passive or active implementation in Section 3. We present an analysis of the application to the model Prothero–
Robinson problem in Section 4. In Section 5 we present and discuss the results of our numerical experiments and finally
conclude with some remarks in Section 6.

2. Symmetry

If R denotes the equivalence class of Runge–Kutta methods generated by the triple (A,b, c), we write R = (A,b, c),
where A is the Runge–Kutta matrix, b the vector of weights, c the vector of abscissas and e the vector of units. At the nth
step xn−1 → xn = xn−1 + h with stepsize h, the method is defined by

Y [n] = e ⊗ yn−1 + h(A ⊗ IN)F
(
xn−1 + ch, Y [n]),

yn = yn−1 + h
(
bT ⊗ IN

)
F
(
xn−1 + ch, Y [n]), (2)

for an initial value problem y′(x) = f (x, y), y(x0) = y0, where f : [x0, X] × �N → �N and yn is the update while Y [n] is the
vector of internal stages with

Y [n] =
⎡
⎢⎣

Y [n]
1
...

Y [n]
s

⎤
⎥⎦ , F

(
xn−1 + ch, Y [n]) =

⎡
⎢⎣

f (xn−1 + c1h, Y [n]
1 )

...

f (xn−1 + csh, Y [n]
s )

⎤
⎥⎦ .

The method is called symmetric or self-adjoint if

−R−1 = R, (3)

where −R = (−A,−b,−c) is the method R applied with stepsize −h, and R−1 = (A − ebT ,−b, c − e) is the inverse of R.
It follows that the adjoint of R is given by −R−1 = (ebT − A,b, e −c) ≡ (PAP, Pb, Pc), and a symmetric method is therefore
characterized by the symmetry conditions,

Pb = b, PAP = ebT − A, Pc = e − c, (4)
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Fig. 1. Error behavior of G3 with symmetrizer applied to a Prothero–Robinson problem.

where P is a permutation matrix which reverses the order of the stages with its elements satisfying pij = δi,s+1− j . The third
condition assumes that bT e = 1 and Ae = c hold. The symmetry conditions (4) will be used in subsequent calculations. For
example, the stability function R(z) = 1 + zbT (I − z A)−1e satisfies

R(z)R(−z) = 1, (5)

and therefore implies |R(∞)| = 1 which means symmetric methods provide no damping for stiff problems.
In this paper, we are concerned with the Runge–Kutta methods that arise from the integration process based on Gaussian

quadrature where the abscissas are given by the roots of the equation P s(2x−1) = 0. Here P s(x) is the Legendre polynomial
of degree s defined on the interval [−1,1]. In general, an s-stage Gauss method is constructed by using the simplifying
assumptions B(s) and C(s) [5], where

B(p): bT ck−1 = 1

k
, k = 1, . . . , p,

C(q): Ack−1 = 1

k
ck, k = 1, . . . ,q, (6)

and powers of the vector c refer to component-wise powers. In fact, Gs satisfies B(2s) and is of classical order 2s.
Besides the suppression of order reduction, symmetrizers can also provide damping for the oscillations that arise numer-

ically. The stability function of G3, like that of the implicit midpoint rule, has the property R(∞) = −1 and gives rise to
the oscillatory error behavior for the Prothero–Robinson (PR) problem shown in Fig. 1(a). In a way similar to the damping
that smoothing provides for the implicit midpoint rule, a generalization of smoothing (symmetrization) for G3 results in the
error behavior shown in Fig. 1(b).

We now generalize the smoothing formula introduced by Gragg,

ŷn = 1

4
(yn−1 + 2yn + yn+1),

for an arbitrary symmetric Runge–Kutta method. This smoothing formula, although designed for the explicit midpoint rule,
turned out to be the same for the implicit midpoint rule and implicit trapezoidal rule (see [1] and [13]). The generalized
formula for symmetric Runge–Kutta methods of higher order will now involve internal stage values beyond the point xn just
as the above formula involves the update yn+1.

3. Symmetrization

Let Rm = 1
m Rm denote the composition of m steps of an arbitrary symmetric Runge–Kutta method R ≡ (A,b, c) each

with stepsize h = H/m. If the last step of Rm is replaced by a method R̃, the resulting method is then denoted by
R̂m = 1

m (Rm−1 ◦ R̃) as shown in Fig. 2. When m = 1, Rm−1 = I , the identity method which leaves the starting value
unchanged for all stepsizes and problems. Since the symmetry property −R−1 = R results in R−m = Rm for all m, where
R−m is the composition of m steps of the adjoint method −R−1 with stepsize h, the method R̃ is constructed so that
R̂−m = R̂m for all m. By Theorem 8.6 in [12] this preserves the h2-asymptotic error expansion but neither R̃ nor R̂m is
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Fig. 2. Symmetrization in the m-th step.

self-adjoint. The method R̃, called a (one-step) symmetrizer, must now satisfy R̃ ◦ (−R̃−1) = R 2 [7] and therefore has
Butcher tableau given by

R̃ = ( Ã, b̃, c̃) ≡
([

A 0
ebT A

]
,

[
b − P u

u

]
,

[
c

e + c

])
, (7)

where the weight vector u is chosen to satisfy the damping and order conditions. We remark that the method R̃ is the
composition of two steps of R except that the weights are different and gives an update over one step (with stepsize h).
A generalization to a composition involving four steps of R is possible (called a two-step symmetrizer) but will not be
considered in this paper.

We suppress the Kronecker product notation for simplicity and obtain from (2) the defining equations for the sym-
metrized step,

Ỹ [m] = ẽ ym−1 + h Ã F̃
(
xm−1 + c̃h, Ỹ [m]),

ỹm = ym−1 + hb̃T F̃
(
xm−1 + c̃h, Ỹ [m]) = b̃T Ã−1Ỹ [m] = uT A−1(P Y [m] + Y [m+1]). (8)

Hence a symmetrizer for a Gauss method at step m depends on Y [m] and Y [m+1] , the internal stage vectors for steps m
and m + 1 respectively. We remark that in the case where A is singular as for the Lobatto IIIA methods, a different way of
computing the symmetrization step will have to be considered.

By using the symmetry conditions (4), the stability function of R̃ can be shown to be given by

R̃(z) = 1 + zb̃T ( Ĩ − z Ã)−1ẽ = R(z)
(
1 + 2z2uT (

I − z2 A2)−1
c
)
. (9)

Hence R̃(∞) = R(∞)(1 − 2uT A−1e) and R̃(∞) = 0 gives the damping condition

uT A−1e = 1

2
, (10)

since A is nonsingular for Gauss methods. In the case of G̃2, the remaining parameter in u is chosen to satisfy the condition
for order 3, namely,

uT c = 0. (11)

This yields u = [
√

3+1
24 ,−

√
3−1
24 ]T and therefore (8) becomes

ỹm =
(

1

4
+

√
3

6

)(
Y [m+1]

1 + Y [m]
2

) +
(

1

4
−

√
3

6

)(
Y [m]

1 + Y [m+1]
2

)
. (12)

The stability function is given by

R̃(z) = 1 − 1
12 z2(

1 − 1
2 z + 1

12 z2
)2

. (13)

For G̃3 the fulfillment of (10) and (11) leaves one further parameter to be determined. The conditions for order 5 are
uT c3 = 0 and uT Ac2 = 0. Since C(3) holds for G3 these two conditions are equivalent and G̃3 will be of order 5 if we
choose

uT c3 = 0. (14)

This yields u = [ 13+3
√

15
360 ,− 1

45 , 13−3
√

15
360 ]T ,

ỹm =
(

1

4
+

√
15

15

)(
Y [m+1]

1 + Y [m]
3

) +
(

1

4
−

√
15

15

)(
Y [m]

1 + Y [m+1]
3

)
, (15)

and the stability function
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R̃(z) = 1 − 1
20 z2 + 1

600 z4(
1 − 1

2 z + 1
10 z2 − 1

120 z3
)2

. (16)

We can obtain a second symmetrizer of order 3 if, instead of (14), we choose

uT A−1c4 = 0, (17)

which gives u = [ 43+9
√

15
1224 ,− 4

153 , 43−9
√

15
1224 ]T ,

ỹm =
(

55

204
− 7

√
15

102

)(
Y [m]

1 + Y [m+1]
3

) +
(

55

204
+ 7

√
15

102

)(
Y [m+1]

1 + Y [m]
3

) − 2

51

(
Y m]

2 + Y [m+1]
2

)
, (18)

and the stability function

R̃(z) = 1 − 1
20 z2 + 11

5100 z4(
1 − 1

2 z + 1
10 z2 − 1

120 z3
)2

. (19)

3.1. Passive symmetrization

When symmetrization occurs at a point the symmetrized value is not propagated in the passive mode; the symmetric
solutions of the base method are propagated without invoking previously computed symmetrized values. In this mode, we
compute many steps with the symmetric method, storing at each step the update as well as the internal stage values Y [m]
and Y [m+1] , and calculating the symmetrized value according to (8) whenever it is desired. Schematically, we have

y0(h) y1(h) ym−1(h) ym(h) ym+1(h)· · ·
x0 x1 xm−1 xm xm+1· · ·symmetric values

ỹm(h)

symmetrized values

3.2. Active symmetrization

In the active mode, the symmetrized value is propagated whenever it is computed. There are many different active
options. When symmetrization is applied at every step the method is equivalent to R̂1 = R̃ as defined by (7). Another
option, for example, is to apply symmetrization at every alternate step. In this case the basic method is R̂2 = 1

2 (R ◦ R̃),
where the composition of the 3s stages is given by

R ◦ R̃ = ( Â, b̂, ĉ) ≡
([ A 0 0

ebT A 0
ebT ebT A

]
,

[ b
b − P u

u

]
,

[ c
e + c

2e + c

])
. (20)

The stability function is then given by R̂2(z) = R(z/2)R̃(z/2). We note that R̂1 in each step involves solving two sets of
implicit systems of equations whereas R̂2 requires three. However, we have observed that R̂2 is more efficient than R̂1
for both G2 and G3 (see Fig. 3 and Section 4.1).

4. Analysis of the Prothero–Robinson problem

The Prothero–Robinson (PR) problem [15] is defined by

y′(x) = λ
(

y(x) − g(x)
) + g′(x) = λy(x) + φ(x), y(x0) = g(x0), λ ∈ C, �(λ) < 0, (21)

where φ(x) = g′(x) − λg(x) and g is a smooth function. The problem is stiff when |λ| is large but the exact solution
will remain y(x) = g(x) irrespective of the degree of stiffness. We will compare the global error after n steps of passive
symmetrization at step n with active symmetrization at each of the n steps.

It is easy to show that the global error of the numerical solution after n steps consists of the sum of local errors modified
by the stability function and is given by (see [11])

εn = yn − y(xn) =
n∑

i=1

R(z)n−iψi(z), (22)

where ψi(z) is the local error for the i-th step given by
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ψi(z) =
∞∑

k=2

hk

k!
(
1 − kbT ck−1 + zbT (I − z A)−1(ck − kAck−1))g(k)(xi−1). (23)

The term 1 − kbT ck−1 vanishes for k = 1, . . . , p if B(p) holds, while ck − kAck−1 vanishes for k = 1, . . . ,q if C(q) holds.
G2 has classical order 4 and stage order 2 since B(4) and C(2) hold while G3 has classical order 6 and stage order 3
since B(6) and C(3) hold. For G2 we have ψi(z) = O (h3) as h → 0 and z → ∞. However, R(z) → 1, and the sum over the
local error terms in the global error introduces a factor n which results in the global error behaving like O (h2). This is the
phenomenon of order reduction where the error behavior of the method for stiff problems is governed by the stage order.
For G3 both the local and global error behaves like O (h4) because R(∞) = −1 results in the cancellation of consecutive
terms.

We now investigate the effect of symmetrization on the methods G2 and G3.

4.1. Active symmetrization by R̂1 or R̂2

In the case of active symmetrization at every step, R̂1 = R̃, as given by (7). The stability function R(z) in (22) is replaced
by R̃(z) and (23) is replaced by

ψ̃i(z) =
∞∑

k=2

hk

k!
(
1 − kb̃T c̃k−1 + zb̃T ( Ĩ − z Ã)−1(c̃k − kÃc̃k−1)) ỹ(k)(xi−1). (24)

When the problem is stiff (that is, |λ| ∼ O (1/h2)), then |z| = |λ|h ∼ O (1/h) → ∞ as h → 0, the local error for G̃2 becomes

ψ̃i(z) = h3

6
ỹ′′′(xi−1)

(
1 − b̃T Ã−1c̃3 − 1

z
b̃T Ã−2(c̃3 − 3 Ãc̃2) + O

(
1/z2))

+ h4

24
ỹ(4)(xi−1)

(
1 − b̃T Ã−1c̃4 + O (1/z)

) + O
(
h5).

Now we have for k � 4, 1 − b̃T Ã−1c̃k = (1 − 2uT A−1e)(1 − bT A−1ck) − 2k(k − 1)uT c − 2
(k

4

)
uT A−1c4. By (10) and (11),

1 − b̃T Ã−1c̃3 = 0 while 1 − b̃T Ã−1c̃4 = −2uT A−1c4 = 1
36 . Since b̃T Ã−2(c̃3 − 3 Ãc̃2) = 1

6 , the leading error term in ψ̃i(z)

is O (h4) and is independent of stiffness, provided that |λ| ∼ O (1/h2). Moreover, since R̃(z) = O (1/z2) as z → ∞, the
contributions to the global error at step n due to the local errors at all steps except the last are dampened by the stability
function. The global error at step n is therefore essentially determined by the local error at step n and is O (h4), thus
suppressing order reduction and restoring the classical order of the basic symmetric method.

In the case of active symmetrization at every alternate step using R̂2 = 1
2 (R ◦ R̃) as given by (20), we have for k � 4,

1 − b̃T Ã−1c̃k = (
1 − 2uT A−1e

)(
1 − 1

2k
R(∞)bT A−1ck − 1

2k
bT A−1(e + c)k

)
−

(
k
2

)
uT c − 1

8

(
k
4

)
uT A−1c4.

Again by (10) and (11), 1 − b̃T Ã−1c̃3 = 0 while 1 − b̃T Ã−1c̃4 = − 1
8 uT A−1c4 = 1

576 . Taking into account that each step

of R̂2 involves 3/2 times the computations compared with R̂1, the coefficient of h4 is smaller by a factor ( 3
4 )4. Hence we

use R̂2 for comparison with the passive case.
For G̃3 the terms in (24) vanish for k up to 3 and, since 1− b̃T Ã−1c̃4 = −2uT A−1c4 vanishes for the order-3 symmetrizer

but not for the order-5 symmetrizer, we have

ψ̃i(z) =
{

O (h4) for the symmetrizer of order 5,

O (h6) for the symmetrizer of order 3,
since |z| = |λ|h ∼ O (1/h) as h → 0.

The global error for G̃3, as for G̃2, behaves like the local error at the last step.

4.2. Passive symmetrization after n − 1 steps

In passive symmetrization at step n, the global error becomes

ε̃n = R̃(z)εn−1 + ψ̃n(z), (25)

where R̃(z) is given by (13) for G̃2 and either (16) or (19) for G̃3; ψ̃n(z) is the local error at step n, and εn−1 is the global
error of the symmetric solution up to step n − 1. When z → ∞, R̃(z) = O (1/z2) and therefore dampens the global error
εn−1 so that the global error ε̃n behaves essentially like the local error ψ̃n(z). Just as in the analysis given in Section 4.1 the
local and global errors behave as follows:

ε̃n ∼ ψ̃n(z) =
{

O (h4) for G̃2 and the order-5 G̃3,

O (h6) for the order-3 G̃3.
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Fig. 3. PR problem for g(x) = sin(x): Order behavior of G2 with active and passive symmetrization for different λ values at X = 5.

Since damping in both the active and passive modes results in the global error being determined by essentially the
local error in the last step and therefore having essentially the same value for stiff linear problems, we investigate whether
the situation is similar for stiff nonlinear problems. If both modes are equally efficient we can then conclude that passive
symmetrization is to be preferred.

4.3. Numerical results on order behavior

This explains the restoration of the classical order behavior of Gauss methods with symmetrizer in passive and active
modes for a very stiff PR problem with g(x) = sin(x). To confirm these theoretical results, we have performed numerical
experiments on the PR test problem. The plots in Fig. 3 show the numerical results for G2 with active and passive sym-
metrization for different values of the stiffness parameter λ. When the problem is nonstiff (e.g. λ = −1), the plots show
order-3 behavior for active symmetrization and order-4 behavior for passive symmetrization. This is true of the active case
because we are applying (7) with R̃ = G̃2 which is of order 3. In the passive case it is true because we are applying an
order-3 symmetrizer locally at the end of the step and the global order will show order-4 behavior. As for the mildly stiff
case (e.g. λ = −102 and λ = −104) we observe that G2 will start to show order reduction from 4 to 2 and will recover its
classical order as the stepsize is further reduced. We can also observe that the symmetrizer will start to have an effect here.
When the problem is very stiff (e.g. λ = −106), the symmetrizer is more accurate compared to the base method. Another
interesting observation is that the active symmetrization using R̂1 will behave like passive symmetrization and give order-4
behavior (see Section 4.1). Moreover, there seems to be an improvement in accuracy when active symmetrization is applied
at every alternate step, R̂2. The behavior of G3 for λ = −1 to λ = −106 is similar to that for G2. Therefore when applied
with extrapolation, the global error of G̃2 and G̃3 can be expected to behave like O (h6) and O (h8) respectively. Since we
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Fig. 4. Kaps problem (Problem 2): Order behavior of G2 with active and passive symmetrization for different λ values at X = 3.

have observed that active symmetrization applied at every alternate step gives smaller error than active symmetrization
applied at every step, the following numerical results will only be given for R̂2 in the active mode.

The order behavior of the methods for nonlinear problems is difficult to analyze theoretically. Nevertheless, it is inter-
esting to determine the behavior of symmetrizers for these problems experimentally. We choose the Kaps problem (26) as
a test problem. Numerical results are given in Figs. 4–6. When the problem is nonstiff (e.g. λ = −1), the order behavior of
active as well as passive symmetrization is similar to the PR case for both G̃2 and G̃3. The irregular behavior of G̃3 seen
in Figs. 5 and 6 as the stepsize decreases is due to roundoff error. In the mildly stiff case we observe that G2 and G3
will exhibit order reduction from 4 to 2 and from 6 to 4 respectively. Meanwhile passive and active symmetrization of G2
and G3 show order behavior similar to the PR case. When the problem is stiff (e.g. λ = −106), active symmetrization of
G2 shows order-3 behavior while passive symmetrization still gives order-4 behavior (see Fig. 4). However for G3, active
symmetrization gives order-4 behavior with the order-5 symmetrizer and order-3 behavior with the order-3 symmetrizer
(see Fig. 5 and Fig. 6). This is completely different from the PR case where the classical order is restored. On the other
hand, passive symmetrization still gives order-4 behavior with both the order-3 and the order-5 symmetrizer. We note that
similar order behavior was observed for the Oregonator problem given in [11] for short intervals using constant stepsize.
The summary of the order behavior for the linear and nonlinear Kaps problem is given in Table 2.

5. Further numerical examples and efficiency considerations

We now present the results of numerical experiments for G2 and G3 with active and passive symmetrization/extrapola-
tion on linear and nonlinear problems. The main aim in this paper is to investigate the performance of active and passive
symmetrization. In our experiments we carry out extrapolation with stepsizes h and h/2. For constant stepsize we perform
passive extrapolation where the extrapolated values are not propagated. This is because we have found this mode to be
more efficient than the active mode in which the extrapolated values are propagated. However, the opposite is the case in
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Fig. 5. Kaps (Problem 2): Order behavior of G3 with active and passive symmetrization for different λ values at X = 3 using order-5 symmetrizer.

Table 2
Summary of order for G2 and G3 with passive ( p̃) and active ( p̂) symmetrization for linear scalar problems and nonlinear Kaps problem.

Nonstiff case, λ = −10 Stiff case, λ = −106

p p̃ p̂ p p̃ p̂

Linear scalar problems
G2 4 4 3 2 4 4
G3 Eq. (15) 6 6 5 4 4 4

Eq. (18) 6 4 3 4 6 6

Nonlinear Kaps problem
G2 4 4 3 2 4 3
G3 Eq. (15) 6 6 5 4 4 4

Eq. (18) 6 4 3 4 4 3

the variable stepsize setting and we therefore present results for active extrapolation. We leave the detailed study of active
and passive extrapolation to another paper.

Since analysis of the PR problem suggests improvement in the accuracy of symmetric methods when applied with sym-
metrization, the interest is in the efficiency of the two modes for more general problems. In our experiments, passive and
active symmetrization applied with extrapolation are performed separately. Efficiency is measured using CPU time. We have
also computed efficiencies using the number of function evaluations and found similar results. Hence all our numerical
results are presented using CPU time. We have implemented compensated summation in our computations to minimize
roundoff error. All the nonlinear equations are solved using simplified Newton as in [11] on page 119. The experiments
are for six problems. We use constant stepsize for Problems 1–2 and variable stepsize for Problems 3–5 with the standard
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Fig. 6. Kaps (Problem 2): Order behavior of G3 with active and passive symmetrization for different λ at X = 3 using order-3 symmetrizer.

Table 3
Notation for numerical experiments.

Gs s = 2,3, s-stage Gauss method
PS Passive symmetrization
ASj Active symmetrization with j = 1 at every step and j = 2 at every alternate step

A last X attached to PS or ASj means with extrapolation

stepsize control as given in [11]. In the variable stepsize setting the local errors are estimated using the difference be-
tween the approximations for the base method and the symmetrizer. These three problems are solved with the tolerances
tol = 10−i, i = 5, . . . ,12. The notation we use in all the numerical experiments is given in Table 3.

Problem 1.

y′ = λy + e−x, y(0) = − 1

1 + λ
, λ ∈ (−∞,−2], y(x) = − 1

1 + λ
e−x.

We integrated to X = 3 with stepsize h = 3 and λ = −106.

Problem 1 is a linear problem given in [9]. Fig. 7 shows the efficiency diagram for G2 and G3 with passive and active
symmetrization/extrapolation for the very stiff case (that is, λ = −106). We observe that with both methods, the sym-
metrizer restores the classical order behavior and therefore allows extrapolation to improve accuracy. Moreover, although
active symmetrization requires more computational time, it seems to be slightly more efficient than passive symmetrization.
We have performed tests with the λ values, λ = −1, λ = −102 and λ = −104 and the observation is similar to that for the
Prothero–Robinson test problem given in Fig. 3.
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Fig. 7. Problem 1: The efficiency diagram of G2 and G3 with passive and active symmetrization and extrapolation for λ = −106 and h = 3 at X = 3.

Fig. 8. Problem 2 (Kaps): The efficiency diagram of G2 and G3 with passive and active symmetrization and extrapolation for λ = −106 and h = 1 at X = 3.
We use the order-5 symmetrizer for G3.

Problem 2 (Kaps).

y′
1 = (λ − 2)y1 − λy2

2, y1(0) = 1,

y′
2 = y1 − y2(1 + y2), y2(0) = 1, (26)

with y1(x) = e−2x and y2(x) = e−x . We integrated to X = 3 with stepsize h = 1 and λ = −106.

Problem 2 is a well-known two-dimensional nonlinear problem. Fig. 8 shows the efficiency diagram for G2 and G3. For
this value of the stiffness parameter (i.e. λ = −106), we observe that passive symmetrization of G2 is more efficient than
active symmetrization because the global error in the passive case behaves like O (h4) in contrast to the O (h3) behavior in
the active case (refer Fig. 8(a)). Therefore with extrapolation the global error for passive symmetrization behaves like O (h6).
On the other hand, neither passive nor active symmetrization improves the order behavior of G3 (see Fig. 5). However, in
Fig. 8(b) we see that the global error of G3 with symmetrization is much smaller than without. In addition, extrapolation
gives order-6 behavior and greater accuracy in both cases. Symmetrization in the active mode is more efficient than in the
passive mode for G3, an effect opposite to that for G2.
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Fig. 9. Problem 3 (HIRES): The efficiency diagram of G2 and G3 with passive and active symmetrization and extrapolation using initial stepsize h = 0.01 at
X = 321.8122. We use the order-5 symmetrizer for G3.

Problem 3 (HIRES). HIRES or ‘High Irradiance RESponse’ is a nonlinear system of 8 dimensions. It is an example of
a mildly stiff problem. The mathematical model is given in Hairer and Wanner [11]. The initial value is given by
y0 = [1,0,0,0,0,0,0,0.0057]T . We integrated to X = 321.8122 using the initial stepsize h = 0.01. Since this is a prob-
lem of dimension 8, it is hard to obtain the exact solution. The reference solution is obtained by RADAU5 using a very small
tolerance [14]:

y′
1 = −1.71y1 + 0.43y2 + 8.32y3 + 0.0007,

y′
2 = 1.71y1 − 8.75y2,

y′
3 = −10.03y3 + 0.43y4 + 0.035y5,

y′
4 = 8.32y2 + 1.71y3 − 1.12y4,

y′
5 = −1.745y5 + 0.43y6 + 0.43y7,

y′
6 = −280y6 y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7,

y′
7 = 280y6 y8 − 1.81y7,

y′
8 = −y′

7.

The numerical results for Problem 3 are given in Fig. 9 using variable stepsize control. For this mildly stiff problem we
observed that symmetrization of G2 is slightly more efficient in the active than in the passive mode. Furthermore, active
symmetrization with extrapolation is also observed to give greater accuracy than passive symmetrization with extrapolation.
In the constant stepsize setting we found that symmetrization at every alternate step (AS2) is more efficient than at every
step (AS1) over many test problems. Referring to Fig. 9 we observe that AS2 still gives greater accuracy than AS1 when
variable stepsize is used for this problem. In general it is still uncertain which of the active symmetrization is more efficient
in the variable stepsize setting. Similar results are obtained for G3.

Problem 4.

y′
1 = −y2 − λy1(1 − y2

1 − y2
2), y1(0) = 1,

y′
2 = y1 − ρλy2(1 − y2

1 − y2
2), y2(0) = 0,

with ρ = 1. We integrated to X = 7 with h = 0.005 and λ = −106.

Problem 4 has a smooth invariant manifold and the solution lies on the unit circle. Numerical results are presented in
Fig. 10. We observe that G2 is more efficient when applied with symmetrization in either mode. Moreover, in this problem
we observe that the extrapolation AS1X is more efficient than AS2X and PSX. Similar results are seen for G3.
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Fig. 10. roblem 4: The efficiency diagram of G2 and G3 with passive and active symmetrization and extrapolation using initial stepsize h = 0.005 at X = 7.
We use the order-5 symmetrizer for G3.

Fig. 11. Problem 5: The efficiency diagram of G2 and G3 with passive and active symmetrization and extrapolation using initial stepsize h = 0.001 at X = 2.
We use the order-5 symmetrizer for G3.

Problem 5 (Van der Pol). Van der Pol is a system of ODEs of dimension 2 that describes the behavior of nonlinear circuits [11].
The parameter ε is a stiffness parameter. The problem becomes more stiff by decreasing the value of ε .

y′
1 = y2, y1(0) = 2,

y′
2 = 1

ε

((
1 − y2

1

)
y2 − y1

)
, y2(0) = 0.

We integrated to X = 2 with h = 0.001 and ε = 10−5.

The numerical results for Problem 5 is given in Fig. 11. For G2 we observed that passive symmetrization is more efficient
than the active symmetrization. However, with extrapolation both passive and active symmetrization are equally efficient.
Another observation is that AS1X is more efficient than AS2X. This is contrary to the constant stepsize setting and the
results observed in Problem 3. On the other hand, for G3 we observed that passive symmetrization is more advantageous
than active symmetrization. However, it is hard to observe the efficiency of symmetrization with extrapolation and it can
be due to the roundoff error. Nevertheless, symmetrization performed better than the base methods.
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6. Conclusion

In this paper our experimental results show that a Gauss method is more accurate and efficient when applied with a
symmetrizer in either mode. The results also show that symmetrization can restore the classical order in solving stiff linear
scalar problems and that extrapolation improves both accuracy and efficiency. Symmetrization in the passive mode seems
to be marginally more efficient than in the active mode for this type of problem. The feasibility of basing an extrapolation
method on higher order symmetric Runge–Kutta methods with symmetrizers appears promising at least for linear problems
using fixed stepsize.

In the case of nonlinear problems our experiments on fixed stepsize show that passive symmetrization/extrapolation is
more efficient than active symmetrization/extrapolation. On the other hand, in a variable stepsize setting, extrapolation of
active symmetrization is more efficient than that of passive symmetrization. In our variable stepsize experiments, the code
used is preliminary since some important features such as error estimation, stepsize control and starting values have yet to
be refined.

A drawback of symmetrization is the need to compute beyond the current step. If computation cannot proceed beyond
the endpoint then the symmetrized value there has to be estimated by some other means. For example, if the symmetrized
values ŷn−i for i = 1, . . . ,5 have been computed, then using the interpolating polynomial,

p(x) = a0 + a1x + a2x2 + a3x3 + a4x4,

where the coefficients are determined by p(ih) = ŷn−i , we can estimate the symmetrized value at xn without additional
cost by

ŷest = a0 = 5 ŷn−1 − 10 ŷn−2 + 10 ŷn−3 − 5 ŷn−4 + ŷn−5.

If additional symmetrized values are computed in the last step xn−1 → xn−1 + h using stepsize h/5 at xn−i/5 = xn−1 + 1
5 (5 −

i)h, i = 1, . . . ,4, then a better estimate can be obtained by

ŷest = 5 ŷn−1/5 − 10 ŷn−2/5 + 10 ŷn−3/5 − 5 ŷn−4/5 + ŷn−1.

In the future we hope to report on a study of symmetrization and extrapolation in a wider context with a more practical
code.
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